Direct Access to the

Glossary: 0#  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
Companies: 0# A B C D E  F G H I J K L M N O P Q R S T U V W X Y Z

English: Laminate / Deutsch: Laminat / Español: Laminado / Português: Laminado / Français: Stratifié / Italiano: Laminato /

In the context of the space industry, laminate refers to a composite material formed by bonding multiple layers of material together. These layers can include various materials such as polymers, metals, and ceramics, each serving specific functions within the composite structure. The primary purpose of laminates in the space industry is to create lightweight and high-strength materials that can withstand the harsh conditions of space and protect spacecraft and satellites.

Examples and Application Areas

International Examples:

  1. Solar Panel Laminates: Solar panels used in space applications often consist of laminate layers that protect the solar cells from radiation and micrometeoroid impacts while maintaining high energy conversion efficiency.

  2. Thermal Insulation Laminates: Spacecraft require effective thermal insulation to protect against extreme temperature fluctuations. Multilayer laminate materials with reflective surfaces are used for this purpose.

  3. Radiation Shielding Laminates: Laminates are employed in spacecraft construction to provide radiation shielding to protect both equipment and astronauts during deep-space missions.

National Examples:

  1. Spacecraft Structural Laminates: The structural components of spacecraft, such as satellite panels and fairings, often employ composite laminate materials for their lightweight yet robust properties.

  2. Heat Shield Laminates: Heat shields on re-entry vehicles and space probes use ablative laminate materials that dissipate heat during atmospheric re-entry.

  3. Instrumentation Laminates: Sensitive instruments aboard space missions benefit from laminated materials that offer protection from cosmic radiation and micrometeoroid impacts.

History and Legal Basics

The use of laminates in the space industry has a history dating back to the early days of space exploration. The development and application of advanced laminate materials have been critical to the success of space missions. From a legal perspective, standards and regulations govern the use of materials in space applications to ensure safety, reliability, and compliance with international agreements.

Risks and Challenges

While laminates offer numerous advantages in space applications, there are associated risks and challenges:

  • Material Compatibility: Ensuring that the various materials within a laminate are compatible and do not react with each other over time is crucial for long-duration missions.

  • Micrometeoroid Impact: The risk of micrometeoroid impacts in space can potentially damage laminate layers, compromising the structural integrity of spacecraft.

  • Space Debris: Space debris poses a threat to spacecraft, and laminates used in protective shields must be designed to withstand impacts from debris.

Examples of Sentences

  • The spacecraft's thermal protection system consists of a high-performance laminate.

  • The satellite's laminate structure withstood the extreme conditions of space.

  • Several layers of laminates were used in the construction of the solar panels.

  • Laminating multiple materials together enhances the overall strength of the spacecraft.

Similar Concepts and Synonyms

  • Composite Materials
  • Multilayer Structures
  • Reinforced Materials

Summary

In the space industry, laminate refers to a composite material consisting of bonded layers with various functions. These laminates find applications in spacecraft, satellites, and space probes, providing structural integrity, thermal protection, and radiation shielding. While offering significant benefits, the use of laminates in space also comes with challenges related to material compatibility and the space environment's hazards.

--

No comments


Do you have more interesting information, examples? Send us a new or updated description !

If you sent more than 600 words, which we can publish, we will -if you allow us - sign your article with your name!

Related Articles

Coat at top500.de■■■■■■■■■■
Coat is naturally the skin of humans and animals, or can refer to a layer of a certain substance, usually . . . Read More
Titanium ■■■■■■■■■
Titanium is a metal that is used in the construction of aircraft and other aerospace systems. Titanium . . . Read More
Material at top500.de■■■■■■■■■
Material is anything which consists of one or more substances which are intentionally used to form another . . . Read More
Euro-Composites SA ■■■■■■■■
Euro-Composites SA is a company in the space industryThe EC group is a global player in the field of . . . Read More
Resource ■■■■■■■■
Resource: In the aerospace context, a resource can refer to any material, tool, or personnel necessary . . . Read More
Structure ■■■■■■■■
Structure: In the aerospace industry, structure refers to the framework or underlying support that is . . . Read More
Lightweight ■■■■■■■■
In the aerospace industry, the term "lightweight" refers to materials or structures that have a low mass . . . Read More
Polymer ■■■■■■■■
A polymer is a type of material that is used in a variety of applications. Polymers are large molecules . . . Read More
Silicon ■■■■■■■■
Silicon is a chemical element, with the symbol Si and atomic number 14 In the aerospace context, silicon . . . Read More
Photoelectron at top500.de■■■■■■■■
A photoelectron in the industrial context refers to an electron that is emitted from a material (usually . . . Read More